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Whittaker's Cardinal Function in Retrospect* 
By J. McNamee, F. Stenger and E. L. Whitney 

Introductory Note. Eoin L. Whitney died of a heart attack on November 21, 1966. His col- 
leagues knew him to be a very good mathematician. He was an inspiration to many, in particular 
to the co-authors of the present paper. 

Abstract. This paper exposes properties of the Whittaker cardinal function and illustrates 
the use of this function as a mathematical tool. The cardinal function is derived using the 
Paley-Wiener theorem. The cardinal function and the central-difference expansions arelinked 
through their similarities. A bound is obtained on the difference between the cardinal func- 
tion and the function which it interpolates. Several cardinal functions of a number of special 
functions are examined. It is shown how the cardinal function provides a link between 
Fourier series and Fourier transforms, and how the cardinal function may be used to solve 
integral equations. 

1. Introduction and Summary. The Whittaker cardinal function was discovered 
by E. T. Whittaker [1], who wanted to know whether there exists in the class of 
all functions which take on the same values at the set of points A kh } k--9 h > 0, 
"a function of royal blood whose distinguished properties set it apart from its 
bourgeois brethren". This function then played a fundamental role in the development 
of the theory of central difference processes, a theory which was also originated 
by E. T. Whittaker [1]. Somewhat later J. M. Whittaker and his co-workers [2], [3] 
produced a considerable enrichment of this theory. 

A cognate but independent theory has developed more recently in engineering 
literature on the communication of information; this theory stems mainly from 
papers of Hartley [4], Nyquist [5] and Shannon [6], and is usually termed as sampling 
theory. 

Presently, Schoenberg and his students [7] are extending the Whittaker theory 
to splines. 

Our purpose in the present paper is to expose the properties of the Whittaker 
cardinal function C(g, h, x) of a function g and to illustrate by example the use of 
the cardinal function C(g, h, x) as a mathematical tool for the study of some numerical 
processes. 

In Section 2, we define the cardinal function, and we use the Paley-Wiener theorem 
to describe a class of functions B(h) for which C(g, h, x) g(x). We also show that 
the cardinal function C(g, h, x) is actually an orthogonal expansion of every g in B(h). 

In Section 3, we expose some connections between central-difference series and 
the cardinal function. 

In Section 4, we obtain a bound on the difference between g(x) and C(g, x, h) 
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in the case when g(z) is analytic in the region {z = x + iy lyI ? d} for some d > 0, 
and .fO g(x + iV)12 dx < o for all IYI _ d. 

In Section 5, we give a number of examples illustrating the use of the cardinal 
function. More specifically, we examine the cardinal functions C(l/(x - a), h, x), 
C(O /(X2 + a2), hl, x), C(e; X=, h, x), C(i /r(x), h, x) and C(ixI, h, x). We also illustrate 
a connection between the trapezoidal formula and the cardinal function. and we 
illustrate the use of the cardinal function for solving integral equations. Finally, 
we show how the cardinal function provides a link between Fourier transforms and 
Fourier series. 

2. Representation of a Class of Functions by Means of Ordinates. 
2.1. Whittaker's cardinal finction. Let us begin by defining the cardinal function 

of a function g defined on the real lilne R. 
Definition 2.1. Let the function sinc x be defined by 

(2.1) sincx _ sin rx irx 
Let g be a function lefined on R and let h > O. The formal series 

(2.2) E g(kh) sinc - h 

will be called the cardinal series of the function g wit/h respect to the tabular interval h. 
If the series (2.2) converges, we denote its sum by G(g, h, x), and the function Qg, h, x) 
will be called the cardinal function (or Whittaker cardinal futction) of the function g. 

We next state some known properties of Fourier transforms wlhich can be found 
in Titchmarsh [15] and which will enable us to determine a class B(h) of functions 
g(x) for which C(g, h, x) g(x). 

Let LP(a, b) denote the set of all complex Lebesgue measurable functions f(x) 
such that fr lJ(x)lp dx < c. Every function i E L2(R) has the Fourier transform 
F E L2(R) given by 

(2.3) F(x) e J e2f (t) dt. 

Given F, we can recover f by use of 

(2.4) f(t) = I f e-ixtF(x) dx. 

If F is the Fourier transform of f E L2(R) and G is the Fourier transform of g E L2(R), 
theni the product FG is again the Fourier transform of a function 0 C L2(R), provided 
that FG E L2(R). If FG E- L2(R) the function 0 is given in terms of f and g by 

(2.5) 0(t) J f(r)g(t - r) dr. 

If F and G are the respective Fourier transforms of f and g C L2(R), then Parseval's 
theorem states that 

(2.6) J f(t)g(t) dt- I ? F(x)G(x) dy, 

where g and a denote the complex conjugates of g and G respectively. 
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Definition 2.2. Let B(h) denote the set of all functions g such that g(z) - g(x + iy) 
is an entire function, such that g(x) C L2(R), and such that 

(2.7) lg(z)l ? C exp [7r IJy/h] 

for some constant C. 
The following theorem of Paley and Wiener proven in [8, pp. 197-200] appeared 

after many properties of the Whittaker cardinal function were known. 
THEOREM 2.3. Every function g C B(h) cani be represented in the form 

r/h iwz 
(2.8) g(z) = X e1uZG(w) dw 

where G E L2(-7r/h, 7r/h). 
If we combine the Eqs. (2.4) and (2.8) and interchange the order of integration, 

we obtain 
THEOREM 2.4. If g C B(h), then 

(2.9) g(x) = aI g(t)sinc h dt. 
hJh 

By applying Schwarz's inequality to the integral 

(2.10) g(z) - h 
I f(t)sinc 

z 
dt h~~~~ 

where f C L2(R) we see that the function g(z) is an entire function which satisfies (2.7). 
Furthermore, using the identities, 

I 
I ei' sinc - dt 1 if jxl < r/h, h JRh 

(2.11) - 1 if IxI =r/h 

0 if IxI > 7/h, 

derived below in (2.13) and (2.14), together with (2.5), we see that the Fourier trans- 
form of the function g(x) in (2.10) is 

(2.12) G(w) = F(w) if IwI < 7r/h, 
= 0 if lw > 7/hI, 

where wv C R, and where F denotes the Fourier transform of the function f. By an 
application of Theorem 2.3, it now follows that the function g(z) in (2.10) is in B(h). 
We have thus proved 

THlEOREM 2.5. If f E LV(R), then the fiunction g(z) giveni in (2.10) is in B(h). 
If we apply the trapezoidal sumn formula to the integral on the right of (2.10) 

we obtain the cardinal series of the function f(t) 
co kh 

E f(kh) sinc h 
k-W co h 

We shall see in the following section that if g E B(h2), then C(g, h, x) - g(x). 
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Let us illustrate by an example that (2.9) is not generally valid if g g B(h). If in 
(2.10) we take f(t) cos (7rt/bh) and replace z by x and t by x + t, we obtain 

g(x) = I sin 
(rt-h) cos Fir(t + x)/bh] dt 

(2.13) 7 r t 

- 
I cos ( frxbh) sin (t/h1) cos (7rt,'bh) dt, 

7r . R t 

i.e. 

g(x) = cos (lrx/'bh) if b > 1, 

(2.14) = (1/2) cos (rx/'bh) if b 1, 

= 0 if b < 1. 

2.2. The Cardinal Series as an Orthogonal E.xpansion. We shall show that if g E 
B(h) then C(g, h, x) is an orthogonal expansion of g. 

Using (2.3), (2.4) and (2.11), we see immediately that 

(2.15) yJ e* dw =- sinc - 

and Eq. (2.6) therefore enables us to deduce that 

(2.16) sinc x- t hfx = e dw = h sinc- - 
fRi hh 2r 1h h 

Putting s = mnh, t nh in this equiation where m and n are integers, we have 
LEMMA 2.6. If nm and n are integers, then 

! f. x- mh . x - nh 
(2.17) hhslnchslnc h h x 0 if . # , 

1 if In n. 

Next, we prove 
THEOREM 2.7. If g &: B(h), then 

(2.18) g(z) = ak. ine z h 

wvhere 

(2.19) ak -f g(x) sinc X h dx= g(kh). 

Proof. Clearly, e-zw & L-(-7r/h, gr/h) with respect to w for all z CI R. Hence, 
the Fourier series for e-"' converges in L2(-7r/h, 7r/h) to ehEw. If we multiply 
e--IZt by einwh and integrate over (-wr/h, 7r/h), we see that 

2.20) e- izw = hsin 7rza (_ 
I )keikwh 

(2.20) = h k z + kh 

a.e. on (-7rw,1h, 7r/h). Using (2.20), we replace e-"' by its series expansion in (2.8). 
We then interchange the order of integration and sunmmation, as we may, since the 
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mth partial sum of the series on the right of (2.20) is bounded by a constant inde- 
pendent of m, to obtain (2.18), where 

(2.21) aA=- e G(w) dw. 
27r -/h 

By Theorenm 2.3, ak = g(kh). This completes the proof. 
Note that, since G(w) E L2(-7r/h, ir/h), we have k) Jakj2 < . By Schwarz's 

inequality, it follows that the series on the right of (2.18) is absolutely convergent. 
Hence, if we use (2,18) to form the product of g(x) and its complex conjugate, integrate 
over R, and use Lemma 2.6, we obtain 

THEOREM 2.8. If g E B(h), theni 
, ~~~~~~~~~~co 

(2.22) J fg(x)12 dx h E Ig(nh)12. 

T he set 
x - .xnhl 

h sinc h n- 

is therefore a complete orthonormal set in B(h). 
In engineering terminology, the functions which satisfy (2.8) are termed band- 

limited. It is unusual that the coefficients in an orthogonal expansion should depend 
only on a single ordinate of the function and this property exhibits the nature of 
band-limited functions. It is, however, natural to anticipate that an orthogonal 
expansion of the conventional kind should exist for band-limited functions, i.e., 
an expansion in which each coefficient an depends on all the values of a function 
in a line segment; as a typical expansion of the conventional kind we may cite the 
representation of a function in terms of Legendre polynomials in which the general 
coefficient depends on all the function values on (-1, 1). A remarkable expansion 
of this kind for band-limited functions has recently been obtained and it has led 
to important new results in the theory of band-limited and nearly band-limited 
functions (Pollak [I1]). 

3. Summability and Connection with Central Difference Series. In this section, 
we shall link the central-difference formnulas with the cardinal function. We begin 
with a theorem of Ferrar on the summability of the cardinal series (see Whittaker 
[3, p. 69]). 

THEOREM 3.1.. Let 1anJ} _,, be such thlat 

(3.1) ~ ~ ~ ~ colog n 
(3.1) E (la,J + la-.I) < ?> 

Then the series 

( .0 x -nh . x+nih' 
(3.2) C(x) = ao sinc h + E (an sinc h -+ a- sinc -+- 

is absolutely convergent, and for all a E R 

(3.3) C (x - a - Ih!! 
(3.3) C(x) = E C(a + nh) sin c h 
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Let us now examine the formal Everett series 

(3.4) E(g, 17, x)= E [[ j{+k gog+ r ? 
2 

k0 2k + I [2k -t 1 , 

where r and s are defined by r = x/h, s = I - r, go -g(O), g1 g(h), and 

(r3 r(r- l)(r- 2).. (r- m+ 1) 
(3.5) 1m 

If we express the Everett expansion E(g, h, x) of g(x) in terms of ordinates rather 
than differences, we obtain 

[ 

s 

k -n 

k 2i E(g, h, x) = [ 
jgk 

-1 

(3.6) + + 1 n 
( k 

E r + nJ i n-k 2 

We now formally interchange the order of summation to get 

E(g, h, x) F, gkj X s 
+' 

1 
(...l-k L2n 

(3.7) ' 
_ 2n + 1 n-k 

co r + n 2n 

nh-*- t2n + 1, In-hk + 1Jj 

The quantity in square brackets on the right of (3.7) is easily recognized (see [9, p. 21 1]) 
to be the convergent expansion of sinc [(x -kh)/h], i.e., 

sinc c-h s+s-k k, 2 
i=[snln- --E( -A1 

(3.8) 2n + 1 n 

? 
0 r + n1tnr - A:k+ [ 2n 

L2 + 1J n - k + 1J 

Hence, we formally have E(g, h, x)- k-c o g(kh) sinc [(x - kh)/h]. Let us state a 
theorem of Whittaker [3, p. 64] which relates the convergence of these two series. 

THEOREM 3.2. If the series on the right of (3.4) converges, then the right of (2.2) 
is summable (V.P. I/ln2)** to the same sum. If the right of (2.2) converges, then the 
right of (3.4) converges to the same sum. 

If we replace the right of (3.4) by either the Gauss series, the Stirling series, or 
the Bessel series [9, Chapter 8], the statement of Theorem 3.2 remains valid. 

We emphasize the dependence of the right of (2.2) and (3.4) on h, since even 
if these series converge, their sum will not in general be identical with g(x). For 
example, if we sample the function I = sin 7rx/h at spacing h, the cardinal series 
(2.2) yiekls 

" De La Vallee Poussin summability. 
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C(f, h, x) = sin h (x - '/h) li Zn -______+_)_/ 

ir h N-.*0 In N X - (2fl + 1)h/2 

- sin h (x --h) cot 2 (x- 4h) sin h x. 
h 2 h hi 

If we again sample sin 7rx/h at spacing 2h, using the ordinates (4n + l)h/2, (2.2) yields 

C(, 2h, x) = sin 2h (x - h) lim 
A' 

X -1)" 
ir 2/i N-COo n-- X - (4ti + 1)/h/2 

+sin 2h (x- Aih) cosec 2h (x - /) 1. 
2/i 2 

The following theorem, due to Norlund [9, pp. 209, 218), gives the conditions under 
which E(g, x, h) = g(x). In it we assume that x in (3.4) is replaced by a complex 
number z. 

THEOREM 3.3. If the Everett series on the right of (3.4) converges for some z* not 
an integer, then it converges for all complex z to an entire function E(g, h, z) which 
satisfies (2.7). If g C L2(R) and if g(z) is an entire function which satisfies (2.7), then 
the right of (3.4) converges to g(z). 

Finally, we illustrate a method of increasing the rate of convergence of the cardinal 
series, in the case when a derivative of g(x) is known at x = a. 

THEOREM 3.4. Let g(x) = C(g, h, x). Then 

g(x) = g(a) sinc L a] + -g'(a) sin 7r[(x -a)/h] 

x_-a F x -a-_nhl 

h n+- 7t g(a + iih) sinc L h 

Proof. Since g(x) C(g, h, x), we have for all a C R, 
00 ~~x - a -n/i 

(3.10) g(x) E g(a + iih) sinc -- ___ 

n4-co hi 

Differentiating this series, we have 

(3.11) g'(a) = - E (-r g(a + nh). 
n- cnO n/ 

If we multiply both sides of (3.11) by (h/lr) sin 7r(x - a)11h and substitute into (3.10), 
we obtain (3.9). 

4. The Difference Between g(x) and C(g, h, x). We shall now obtain a bound 
on the difference between an analytic function g(z) and C(g, h, z), in the case when z 
is real. 

THEOREM 4.1. Let g(z) = g(x + iy) be analytic within the strip |Y| < d, where 
d > 0. For all jyj < d, let g(x + iy) -* as x -M -JX c, and let g(x + iy) E L2(R) 
with respect to x. Thzen, for all x C R, 

(4.1) g(x) - C(g, h, x) =e 
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where 

1 rx sin - (d 
(4.2) IeI ? h M(d) ird d 

sinh - 
h 

and where 
(~~~~~~~~~~ )/2 

(4.3) M(d) max 4 Jg(x + iV)12 dxJ 
v-*d X 

Proof. Let r and s be real, and let a contour Ln be defined by L -{r + is jrJ : 
n+ and s = d; r - (n + 1) and Isj _ d}. Then L. encloses the points x = kh, 
k = 0, 4:1, .., in. Hence, we deduce from Cauchy's theorem that 

n x - kh s in (,rxlh) 1 g(z) dz 
(4.4) g(x) = f g(kh) sinc x h + (ir/ g(z) dz 

k--n ~~h + 2riz J(z- x) sin- (7rz/h) 

Upon letting n --+ , we obtain the equation 
( sin (7wx/h) j (n+1/2) [g(t + id) g(-t- id) dt 

(4.5) e=lim -- I --- 
-co 27fri -(n+1/2) Lt - x + id t + x + d sinh r(d + it)/h 

since g(x ? iy) -* 0 as x --4 j 00, for all IYI ? d. Upon noting that 

Isinh [7r(d + it)/hII ? e d/d(l - e-2 rdlh)/2 

replacing each term on the right by its absolute value, and using Schwarz's inequality 
for integrals, we obtain (4.2). 

Letting the bound in (4.2) depend upon d enables us to get better bounds by 
varying d. For example, if 

(4.6) M(d) ? (a- d)- 

where a, m > 0, then 

sin- x 
(4.7) l-< (a-mh)), h 

a - mhl/r s inh [7r (a- L?3 ) 

while if 

(4.8) M(d) ? exp (adm) 

where a, m > 1, then 

(amh)l/( ___ ~~sin -h 
(4.9) IeI n h__ _ _ __ _ _ _ _ 

(4.9) le| - ( 7r )s/ inh r( -I- ) 

5. Examples. 
5.1. The Approximiiation of l/(x - a), a = nh. If we take g(x) - l/(x - a) and 

choose the contour Ln as in (4.4) so that the point z = a F nh is in L,,, we obtain 
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an explicit error term since the contour integral tends to zero as n -* co. Thus 

(5.1) 
1 

sinirz/h 1-a 
(5.1)~~~~ z-a C g )sin 7ralh z - a' 

and we note the following: 
1. C(g, h, z) is an entire function (and hence the singularity at z = a is annihilated). 
2. The difference 1 /(z - a) - C(g, h, z) vanishes at z nh. 
If in (5.1) we first replace a by ia, then replace a by ia and subtract the two 

results thus obtained, we get 

(5 .2) ?(x2 + ar , h, z) = Z + a2 a sin ((ra/)) 

This example has been much discussed-sometimes inadequately-in the literature. 
The singularities of the function 1 /(z2 + a2) are irrelevant in discussing the convergence 
of the central difference expansion of this function. It can be seen that if a is real 
the discrepancy between /(z2 + a2) and C(l /(x2 + a2), h, z) can be made as small 
as we please by choosing h sufficiently small, provided IYI < a. 

To illustrate, let us apply the Newton-Gauss series 

NG(g, h, z) = NG(g, 1, z) = g(O) + +Z1/2 + 2! 1 g 

+ Z2 
- 1 62?Z(Z2 -12X(Z2 - 2 2) ]g4 

+ 3! 1/3 + 4! 0?]g + 

where, e.g., 61/2g9 g(SA), to g(z) 1/(1 + z2) at z-i. We then get the sum 
co 1 

(5.4) ~ ~ ~ E W 2 ( + 7r cothrT); 

this can also be obtained by setting a = 1 and taking the limit as z -- i in (5.2), 
5.2. The Approximation of exp (iXx): Aliasing. When g(z) = exp (ixz), the condi- 

tions of Theorem 4.1 are not satisfied and it is not convenient to use the contour 
integral method of Section 2.4 to discuss the error in approximating g(z) by its 
Whittaker cardinal function 

(5.5) C(g, h, z) = sin h) exp (iXph) 
h P-C 7r(z - ph)/h 

This series can be evaluated if we make use of the following known result (see Brom- 
wich [12, p. 393]). 

THEOREM 5.1. Let 0 be the difference between v and the integer nearest to v, and 
let 101 | 1. Then 

(5.6) ~~sin irt exp (2p7riv)=ex ti. (5.6) 7r E(-1)P t = exp (2t7riO). 
r V-0 t -p 

Hence if we write 

(5.7) X = 2rN/h + w; |w| < r/h 

and make use of (5.6), we get 

(5.8) C(g, h,z) = exp [iwz], 
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i.e., we approximate the short-period (<2h) function exp (iXx) by a function whose 
period in x is greater than 2h. As we might expect, if a rapidly oscillating function 
is sampled at spacing h, the rapidity of the oscillation cannot in general be dis- 
covered. Since N in (5.7) is any integer, C(g, h, z) is alial. for the infinite set of functions 

(5.9) exp (iXx) = exp [i(2'rN/h + w)], N 0 O, ?1, 4?2, *. 

Thus, while the higher frequencies are distorted in approximation of g by its cardinal 
function, more faithful representation can be obtained by decreasing h. Note, how- 
ever, that C(sin 1 /x, h, z) -4 sin l/z for any h > 0 and we must in general always 
expect some distortion. 

5.3. An Expansion of i/r(x). Let us take h 1 and let us note that l/r(x) van- 
ishes for x = O , -l,2, * . . We have 

(5.10) c(1/r,i, z) = sin z~1 
(5.10)~ ~~~~~~~~7 / A 1 (z -n) (n- 

We know, however, from analysis that we can write 1/r(z) in the form 

(5.11) I/P(z) = sin rzr( - z) = sinrZfeet- dt, (Rlz < 1). 
7r 7r O 

If we split the range of integration into two ranges (0, 1) and (1, co), expand e-t in 
powers of i and integrate each term over (0, 1), we ot tain 

(5.12) 1/r7(z) = ! sin irz(-) + zP e tt dt 
7/ n-I (z -n)(n- 1)! xr J1 

without any restriction on z. 
Upon comparing (5.10) and (5.12), we see that *** he approximation C(l/r, 1, z) 

is very good when RI z is large and positive, but very poor when Rl z is large and 
negative. 

5.4 Harmonic Analysis.t In the interval -1 ? r ? 1, the function !xl has 
the Fourier expansion 

(5.13) 4 1 2 I 
Cos [(2z + 1)7rx]. 

2 W2 n-0l (2n + 1 

An alternate periodic representation can be obtained by harmonic analysis, using 
only the ordinates at the points 0, ?4, ? 14 4, I1 (Ii = h ): 

(5.14) 8xl-2_2 + \/2 cos Arx- 8-V cos 3irx. 

The series (5.13) can be converted into the right of (5.14) by application of the pro- 
cedure of Section 5.2 as follows. By taking h-x, tl' e term cos 57rx is converted 
into cos 3irx (note that cos 57rx = cos 3Irx at x nh . Similarly the term cos 77rx 
is converted into cos 7rx. Carrying out the conversioi term by term, the Fourier 
series (5.13) converts to 

* * * We cannot obtain a better approximation in this instanc' by decreasing h since the cardinal 
series for 1 /r(x) diverges when h < 1. 

t The name is unfortunate but the process is frequently used. i the periodic analysis ot empirical 
data, such as hourly temperature records. 
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I - 4 -(1 t -4- 1/72 + 1/92 + I/152 + 1/177 ? + cos7rx 

4/7r2(1/32 + 1/52 + I,/12 + 1/132 + ) cos 37rx; 

this is identical with the representation on the right of (5.14). 
Note the considerable distortion introduced in converting short period harmonics 

into long period harmonics. A similar phenomenon occurs when 1 / 1r(z) is represented 
by its cardinal series, with h = 1. The function 1 / r(z) oscillates with large amplitude 
for negative real z and conversion (i.e. the cardinal representation) introduces con- 
siderable distortion. 

5.5. Quadrature by Trapezoidal Rule. If we integrate the cardinal series for g 
termwise, we obtain the trapezoidal rule approximation to f. g(x) dx, i.e. 

(5.15) g(x) dx = h , g(nh) + q. 
n. -C 

We use a contour integral method to obtain a bound on q. Letting L4 be defined 
as in the proof of Theorem 4.1, we see if g(z) is analytic in the interior of L4, and 
continuous on L4, then 

(5.16) 17ri f rg(z) cot irz/h dz = h I g(kh). 
It k--n 

Setting (Ui) cot (irz/h) - e2Tiz/(l 
- e2-iu/) on the upper, and (4i) cot (wrz/h) 

- l-e 2 1i "/(l - e2uiz/h) on the lower segment of L4 that is parallel to the 
x-axis, we obtain 

THEOREM 5.2. Let g(z) = g(x + iy) be analytic in the strip IyI ? d and let g(x + iv) 
0 as x -i h oo for all Iv ? d. If g(x + iy) E L'(R) with respect to x for all lyf 

d, then v in (5.15) is bounded as 

2e -2 rd/h 

(5.17) |?|< - 2dlh N(d), 
te-2e 

where 

(5.18) N(d) = max Jg(x + iv)I dx. 

Proof If the conditions of the theorenm are satisfied, then 

Jr e-2r(d-it)/ + - e-2r(d+ it)/i 

(5.19) r7 J 1 -2r(d-it)/h g(t + id) dt - g(t id) dt 

from wlhich (5.17) follows. 
For example, if 

(5.20) N(d) ? (a - d)- (a, ni > 0), 

then 

(5.21) n( < (2/mh) e-7r(amh/r)/h/[l _ e-27r(a-mL//)/h] 

If 

/e nnX tYS ,\ _~~~~~ ~ ~~~~~~~ 4dt 
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then 

(5.2 3) 1 ? exp Fa(1 - 21) a ] - exp Fa(1 - 1,1)( a )TY 
It is interesting to compare numerical values of these bounds and those in Section 4. 
Upon taking g(x) = e-" we tabulate bounds given by (4.9) and (5.23) in Table 1 
for several values of h. 

TABLE I 

h bound on E bound on tr 
1 1.9 X 10- 1.0 X 10-4 
1 6.0 X 10-5 5.3 X 10-i 
1 1.6 X 10-9 1.4 X 10`7 

5.6. The Approximate Solution of Integral Equations. Let us consider the cardinal 
representation applied to the approximate solution of the integral equation 

(5.24) g(x) = f K(x, y)g(y) dy + f(x). 

Instead of (5.24), we consider the equation 
m i n in 

1I gkCk(X) - J E E Kk,igiCk(x)Ck(y) dy 
(5.25) A=-In .7i-in k=-mn 

+ 1 f,bCk(x) 
k--mn 

where Ck(x) = sinc [(x - kh)/h], gk, - g(kh), Kk, i = K(kh, jh) and fk f(kh). Using 
the orthogonality property of the C,.'s, we thus obtain 

(5.26) > gkCk(x) - 2 fk + h Kk,g,j Ck(X) 
k--m ~k--m i--m 

Multiplying through by Ck(x) and integrating over R leads us to the equations 
m 

(5.27) @2 [8ki - hKk,3]gj = fk, k = - in, - + 1, , n, 

where 6,j= 1 if k =j, if k j. 
Solving this linear system for the gj's, we obtain an approximation to the solu- 

tion of (5.24): 

(5.28) 9W)t giCi(x). 

5.7. Fourier Transfornms and Fourier Series. Let g C L2(R). Let us multiply the 
cardinal series C(g, h, t) of g by etx' (x, t real) and let us formally integrate each 
term of the resulting series. Using (2.11), we obtain 

eix C(g, h, t) dt = h E g(kh)eikhzx if IxI < 7r/h, (5.29) if-CO 
= 0 if lx I> 7r/h. 
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Now, suppose for example that g(t)e"tz satisfies the conditions of Theorem 5.2. 
Then, clearly, the right-hand side of (5.29) approaches the Fourier transform of g 
ash -0. 

Let f E L2(- r/h, 7r/h). Theni f has a Fourier series representation 
co 

(5.30) f(x) E ake 

on (- 7r/h, 7r/h), and furthermore 
7rh co 

(5.31) j If(x)12 dX E i 1 2. 
-r/Ih k co 

Now, suppose that 
00~~~~~~~~~I 

(5 .32) ht 
S 

I g(k h) 2 ,| g(t) 12 dt 
k- -o: X 

as h -+ 0. Using Theorem 2.8 we obtain the followinig theorem: 
THEOREM 5.3. There exists an isomorphism between B(h) and L2(- 7r/h, 7r/h). 

If the function g satisfies (5.32), then the right of (5.29) converges in L2(R) to the 
Fourier transform of g as h -* 0. 

Of course, we could also have deduced the existence of an isomorphism between 
B(h) and L2(- r/h, ir/h) from Theorem 2.3. However, our motivation for the above 
approach stems from textbooks in mathematics (see [13, p. 88]) which deal with 
Fourier series and Fourier integrals, and which state that it would be natural to 
obtain the Fourier transform of a function from its Fourier series over a finite interval 
[- T, 71 by letting T -+ co. We have not seen a natural development of this type 
in any textbook; see however Warmbrod [14] where a procedure of this type is 
carried out. 
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